NCERT Exemplar MCQs

- Let T be the set of all triangles in the Euclidean planen and let a relation R on T be defined as aRb, if a is congruent to b, $\forall a, b \in T$. Then, R is
 - (a) reflexive but not transitive
 - (b) transitive but not symmetric
 - (c) equivalence
 - (d) None of these
- Consider the non-empty set consisting of children in a family and a relation R defined as a R b if a is brother of b. Then R
 - (a) symmetric but not transitive
 - (b) transitive but not symmetric
 - (c) neither symmetric nor transitive
 - (d) both symmetric and transitive
- The maximum number of equivalence relations on the set $A = \{1, 2, 3\}$ are
 - (a) 1
- (b) 2
- (c) 3
- (d) 5
- If a relation R on set $\{1, 2, 3\}$ be defined by $R = \{(1, 2)\},\$ then R is
 - (a) reflexive
- (b) transitive
- (c) symmetric
- (d) None of these
- Let us define a relation R in R as aRb if a ≥ b. Then R is
 - (a) an equivalence relation
 - (b) reflexive, transitive but not symmetric
 - (c) symmetric, transitive but not reflexive
 - (d) neither transitive nor reflexive but symmetric
- The relation $R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)\}$ on set $A = \{1, 2, 3\}$ is
 - (a) Reflexive but not symmetric
 - (b) Reflexive but not transitive
 - (c) Symmetric and transitive
 - (d) Neither symmetric nor transitive
- The identity element for the binary operation * defined on

$$Q - \{0\}$$
 as $a * b = \frac{ab}{2}$, $\forall a, b \in Q - \{0\}$ is

- (d) None of these
- If the set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mapping from A to B is
 - (a) 720
- (b) 120
- (c) 0
- (d) None of these
- If $A = \{1, 2, 3,, n\}$ and $B = \{a, b\}$. Then, the number of surjections from A into B is

- (a) "P2
- (b) 2ⁿ − 2
- (c) 2^π − 1
- (d) None of these
- 10. Let $f: R \to R$ be defined by $f(x) = \frac{1}{x} \forall x \in R$. Then f is
 - (a) one-one
- (c) bijective
- (d) f is not defined
- 11. Let $f: R \to R$ be defined by $f(x) = 3x^2 5$ and $g: R \to R$

by
$$g(x) = \frac{x}{x^2 + 1}$$
. Then gof is

(a)
$$\frac{3x^2-5}{9x^4-30x^2+26}$$
 (b) $\frac{3x^2-5}{9x^4-6x^2+26}$

(b)
$$\frac{3x^2-5}{9x^4-6x^2+26}$$

(c)
$$\frac{3x^2}{x^4 + 2x^2 - 4}$$

(c)
$$\frac{3x^2}{x^4 + 2x^2 - 4}$$
 (d) $\frac{3x^2}{9x^4 + 30x^2 - 2}$

- 12. Which of the following functions from Z into Z are bijective?
 - (a) f(x) = x³
- (b) f(x) = x + 2
- (c) f(x) = 2x + 1
- (d) $f(x) = x^2 + 1$
- If f: R→R be the function defined by $f(x) = x^3 + 5$, then $f^{-1}(x)$ is equal to:
 - (a) (x + 5)^{1/3}
- (b) (x − 5)^{1/3}
- (c) (5 − x)^{1/3}
- (d) (5-x)
- If f: A → B and g: B → C be the bijective functions, then $(gof)^{-1}$ is
 - (a) f⁻¹og⁻¹
- (b) fog
- (c) g-1 of-1
- 15. Let $f: R \left\{ \frac{3}{5} \right\} \to R$ be defined by $f(x) = \frac{3x+2}{5x-3}$. Then
 - (a) $f^{-1}(x) = f(x)$
- (b) $f^{-1}(x) = -f(x)$
- (c) (fof)x = -x (d) $f^{-1}(x) = \frac{1}{19}f(x)$
- 16. If f(x) is defined on [0, 1] by the rule

$$f(x) = \begin{cases} x : x \text{ is rational} \\ 1 - x : x \text{ is irrational} \end{cases}$$

then for all $x \in R$, f(f(x)) is

- (a) constant
- (b) 1 + x
- (c) x
- (d) None of these
- If f: [2, ∞) → R be the function defined by f(x) = x² 4x + 5, then the range of f is
 - (a) R
- (b) [1, ∞)
- (c) [4, ∞)
- (d) [5, ∞)
- Let f: N → R be the function defined by

 $f(x) = \frac{2x-1}{2}$ and $g: Q \to R$ be another function defined

by g(x) = x + 2. Then (gof) $\frac{3}{2}$ is

- (a) 1 (b) 0 (c) $\frac{7}{2}$ (d) 3
- 19. Let f: R → R be defined by

$$f(x) = \begin{cases} 2x & : & x > 3 \\ x^2 & : & 1 < x \le 3 \\ 3x & : & x \le 1 \end{cases}$$

Then f(-1) + f(2) + f(4) is

- (d) None of these
- 20. Let $f: R \to R$ be given by $f(x) = \tan x$. Then $f^{-1}(1)$ is
- (b) $\left\{n\pi + \frac{\pi}{4} : n \in Z\right\}$
- (c) does not exist
- (d) None of these

Past Year MCQs

21. If g is the inverse of a function f and $f'(x) = \frac{1}{1+x^5}$, then

g'(x) is equal to:

[JEE MAIN 2014, C]

- (a) $\frac{1}{1+\{g(x)\}^5}$ (b) $1+\{g(x)\}^5$
- (c) $1 + x^5$
- 22. Let $f: R \to R$ be a function defined by $f(x) = \frac{x m}{x n}$. [BITSAT 2014, A] where $m \neq n$, then

- (a) f is one-one onto (b) f is one-one into
- (c) f is many-one onto (d) f is many-one into
- 23. If $\rho = \{(x, y) | x^2 + y^2 = 1; x, y \in R\}$. Then, ρ is

[BITSAT 2015, A]

- (a) reflexive
- (b) symmetric
- (c) transitive
- (d) anti-symmetric
- 24. Let $f(x) = \frac{ax+b}{cx+d}$, then for f(x) = x, provided that :

- (a) d = -a (c) a = b = 1
- [BITSAT, 2016, A] (b) d = a (d) a = b = c = d = 1
- 25. The function $f: R \to \left[-\frac{1}{2}, \frac{1}{2}\right]$ defined as $f(x) = \frac{x}{1+x^2}$, is:

[JEE MAIN 2017, A]

- (a) neither injective nor surjective
- (b) invertible
- (c) injective but not surjective
- (d) surjective but not injective
- 26. Let f and g be functions from R to R defined as

$$f(x) = \begin{cases} 7x^2 + x - 8, x \le 1 \\ 4x + 5, & 1 < x \le 7, \ g(x) = \\ 8x + 3, & x > 7 \end{cases} |x|, \quad x < -3 \\ 0, & -3 \le x < 2 \\ x^2 + 4, & x \ge 2 \end{cases}$$

[BITSAT 2017, S]

- (a) (fog)(-3) = 8
- (b) (fog)(9) = 683
- (c) (gof) (0) = -8 (d) (gof) (6) = 427

Ans.

District a Charminal of Charles and As																		
1	(c)	4	(d)	7	(c)	10	(d)	13	(b)	16	(c)	19	(a)	22	(b)	25	(d)	
2	(b)	5	(b)	8	(c)	11	(a)	14	(a)	17	(b)	20	(b)	23	(b)	26	(b)	
3	(d)	6	(a)	9	(d)	12	(b)	15	(a)	18	(d)	21	(b)	24	(a)			